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Option pricing method based on partial

differential brownian berg solution

model

Hui Yu1

Abstract. In order to improve the accuracy of the pricing problem about Down-and-Out
discrete barrier option and reduce the computational complexity, a kind of Romberg solution with
barrier option partial differential Brownian mode of discrete time parameter is proposed. First
of all, the Down-and-Out discrete barrier option problem is modeled as a geometric Brownian
motion model with the parameters changing over time, and the option pricing of partial differential
equation (PDE) is performed by using corresponding time change not related to the time. Then
the time-independent PDE obtained is transformed into a simple heat conduction equation form to
realize the model simplification and give the theorem of discrete barrier option pricing. Finally, an
accurate solving of discrete barrier option Brownian model is performed by using Romberg solving
process. The effectiveness of proposed method is verified by the numerical test result.

Key words. Time parameter, Option pricing, Discrete barrier option, Partial differential
equation (PDE), Brownian model.

1. Introduction

The international and domestic financial markets are changing with each passing
day in recent years. For different market demands, financial institutions have put
forward different new options. Barrier option is one of them, also called threshold
option [1, 2]. The option income depends on the level at which the underlying asset
price has reached in a particular period. Most types of barrier options are traded
outside the market, which is generally lower than the price of the conventional option,
but it can reduce the risk in financial investments. At the same time, the barrier
option in investment project strategy can effectively meet the specific demands of
investors, allow investors to wait or give up the investment projects according to their
habits and carry out other investment projects timely, so it is concerned by many
market participants. Barrier options are generally divided knock-in and knock-out
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options [3, 4]. The former is the underlying asset price reaching a certain barrier,
then options exist, and the latter is just the opposite. As to American barrier option,
it is difficult to obtain the closed loop solving due to its greater pricing difficulty
caused by the indeterminacy of share price and time routing, and it is generally
solved by approximate pricing with numerical method.

Classic numerical methods for option pricing include Monte Carlo and tree graph
methods [5, 6], and the later contains binary tree, ternary tree and so on. At present,
the main barrier option pricing method is the calculation method based on the tree
graph, but such method exists many problems, which are mainly concentrated in
convergence. So there is a very large calculation error [7]. Such error is caused by
the differences between real barrier and tree graph barrier. The financial practice
shows that the underlying asset pricing will show occasional "jump" phenomenon,
which is mainly caused by unexpected events, such as human speculation, policy
adjustment, bankruptcy, etc., which can lead to a sudden drop in asset pricing. In
order to overcome the above problems, a limiting method for option pricing of bi-
nary tree is designed in Literature [8], although this method realizes the approximate
convergence of the underlying asset and option barriers, the closer the level between
price and barrier is, the longer the convergence time of computation is. The decom-
posed barrier option pricing technique can solve the shortcomings of the pricing of
tree graphs. Such method is a fast computational method but has many constraints,
which is not convenient for practical application. The Monte Carlo option pricing
method based on least square algorithm is designed in Literature [9]. It is proved
that such method can reduce the error by using sequence certainty to replace pseudo
random sequence in low dimension. Although it can solve the problem of dependent
option pricing and overcome the barrier problem by using interpolation method,
some problems also exist in the convergence of such method.

2. Description of discrete barrier option model

The foreign call option pricing is equal to the simple European option pricing,
so only one of them needs to be studied , and other kinds of barrier options, such
as put options, can be priced with buying call options. Assumed that the price of
underlying stocks can be expressed by a random process Xt. Follow the process of
Geometric Brownian Motion (GBM) [10, 11]:

dXt = (ρ(t)−D(t))Xtdt+ σ(t)XtdW
Q
t , (1)

in which X(0) = x0; the random processWQ
t is the standard Brownian Motion in

the case of risk-neutral measure Q and deterministic function ρ(t), which is the risk-
free interest rate changing over time; D(t) is the unit dividend in a certain time; σ(t)
is time-dependent momentary fluctuation. Considering the monotonically increased
monitoring date, the form is:

0 = t0 < t1 < · · · < tn < · · · < tN = T . (2)
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Assumed that L and E respectively are the lower barrier price and executive
price. Meanwhile Pb = Pb (x, t, n) represents call option price; variable x represents
the share price in the time period t ∈ [tn, tn+1]. According to the famous Black–
Scholes PDE [12, 13], the option price meets following relational expression:

−∂Pb
∂t

+ (ρ(t)−D(t))x
∂Pb
∂x

+

1

2
σ2(t)x2 ∂

2Pb
∂2x

− ρ(t)Pb = 0

(3)

The conditions are as follows:{
Pb(x, T, 0) = (x− E)1(x≥max(E,L)), n = N

Pb(x, tN−n, N − n− 1) = Pb(x, tN−n, N − n)1(x≥L), n = 1, 2, · · · , N − 1

The paper mainly studies the unknown option price in the case of initial time
t = 0. The option price of zero time must be obtained by solving reversed PDE
from the perspective of the option payment condition of final due day T . In order to
find discrete barrier option price (basing on the definitions of up and down barrier
options), following initial condition must be provided in every monitoring data:{

Pb(x, t0, 0) = (x− E)1(x≥max(E,L)), n = 0
Pb(x, tn, n) = Pb(x, tn, n− 1)1(x≥L), n = 1, 2, · · · , N − 1

(4)

in which 1(x≥L) is characteristic function; when x ≥ L, 1(x≥L) = 1; when x < L,
1(x≥L) = 0. Pb(x, tn, n) can be defined as:

Pb(x, tn, n− 1) := lim
t→tn

−Pb(x, t, n− 1) . (5)

Convert the time-varying parameter in Formula (3) to a fixed parameter. On
such basis, respectively give the variations of option price, share price and time as
follows: {

Pb(x, t, n) = hn(t)P̄b(x̄, t̄, n) ,

x̄ = φn(t)x, t̄ = ψn(t) ,
(6)

in which function hn, φn and ψn are unknown. Basing on these functions, PDE
(3) can be transformed into constant coefficient PDE in every monitoring interval.
The forms of ∂Pb

∂t ,
∂Pb

∂x and ∂2Pb

∂x2 is given as follows by using chain rules:

∂Pb
∂t

=
∂hn(t)P̄b

∂t
= hrn(t)P̄b + hn(t)(

∂P̄b
∂t̄

ψrn(t) +
∂P̄b
∂x̄

φrn(t)x) .

∂Pb
∂x

=
∂(hn(t)P̄b)

∂x
= hn(t)φn(t)

∂P̄b
∂x̄

.

∂2Pb
∂x2

=
∂2(hn(t)P̄b)

∂x2
= hn(t)φn(t)2 ∂

2P̄b
∂x̄2

.
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PDE (3) is rewritten as follows by using above variables:

− ∂P̄b
∂t̄

+ (
−φrn(t) + (p(t)−D(t))φn(t)

ψn(t)
x)
∂P̄b
∂x̄

+
σ2(t)φn(t)2

2ψrn(t)
x2 ∂

2P̄b
∂x̄2

= P̄b(
hrn(t)

hn(t)ψrn(t)
+

P (t)

ψn(t)
) ,

(7)

If the coefficient of above constant equation needs to be obtained, ρn and σn
meets following equations:

Pnx̄ =
−φ′n(t) + (ρ(t)−D(t))φn(t)

ψ′n(t)
x

1

2
σ2
nx̄

2 =
1

2

σ2(t)φn(t)2

ψ′n(t)
x2, ρn =

h′n(t)

hn(t)ψ′n(t)
+

ρ(t)

ψ′n(t)

(8)

As to above equation solving, it can be obtained as follows:

φn(t) = Bn exp

(∫ t

tn

((ρ(u)−D(u))− ρnψ′n(u)) du

)
,

ψn(t) =
1

σ2
n

∫ t

tn

σ2 (u) du+An ,

hn(t) = Cn exp

∫ t

tn

(ρnψ
′
n(u)− ρ(u)) du .

(9)

Therefore, the general form of function hn(t), ψn(t) and φn(t) can be obtained
in monitoring interval [tn, tn+1]. PDE (3) can be transformed into following PDE
through such transformation:

−∂P̄b
∂t̄

+ ρnx̄
∂P̄b
∂x̄

+
1

2
σ2
nx̄

2 ∂
2P̄b
∂x̄2

− ρnP̄b = 0 , (10)

in which n = 0, 1, · · · , N − 1; select new constant An, Bn, Cn, ρn and σn to
satisfy condition (4). Firstly try to determine the fixed value A0, B0 and C0, then
φ0 (t0) = 1 can be obtained by considering B0 = 1 according to Definition (9), thus:

(x̄− E)D1(x≥ max(E,L)) =
(φn(t0)x− E)1(φn(t0)x≥max(E,L)) = (x− E)1(x≥max(K,L)) .

(11)

Set C0 = 1 according to Formula (9), following equation can be obtained:

Pb(x̄, t̄0, 0) =
Pb(x, t0, 0)

h0(t0)
= Pb(x, t0, 0) . (12)

Considering A0 = 0, t̄0 = ψ0(t0) = 0 can be obtained. The starting point
of t̄ is consistent with time variable t. Then determine constant An, Bn and Cn.
Thus Formula (6) can be obtained according to the Formula (4), and follows can be
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obtained after modifying the left side of Formula (6):

Pb(x̄, t̄n, n) =
Pb(x, tn, n)

hn(tn)
, x̄ = φn(tn)x, t̄n = ψn(tn) . (13)

Follows can be obtained after modifying the right side of Formula (6):Pb(x̄, t̄n, n− 1)1(x≥ L) =
Pb(x, tn, n− 1)

hn−1(tn)
1(φn−1(tn)x≥L) ,

x̄ = φn−1(tn)x, t̄n = ψn−1(tn) .

(14)

Therefore, the required equivalency can be guaranteed if considering the below
assumptions of hn (·), φn (·) and ψn (·).

φn−1(tn) = φn(tn) = 1 ,

ψn−1(tn) = ψn(tn) ,

hn(tn) = hn−1(tn) .

(15)

3. discrete barrier option pricing

3.1. Main conclusion of study

Theorem 1: if considering follows in every monitoring interval:
An = tn;n = 1, 2, · · · , N − 1

σ2
n =

1

tn+1 − tn

∫ tn+1

tn

σ2(u)du, n = 0, 1, · · · , N − 1 .
(16)

Then ψn−1(tn) = ψn(tn) is satisfied.
Prove: follows can be obtained by using the definition of ψn(·):

ψn−1(tn) =
1

σ2
n−1

∫ tn

tn−1

σ2(u)du+An−1 =

∫ tn
tn−1

σ2(u)du

1
tn−tn−1

∫ tn
tn−1

σ2(u)du
+ tn−1

= tn =
1

σ2
n

∫ tn+1

tn

σ2(u)du+An = ψn(tn) .

(17)

Completed!
Thus as to every monitoring date, value σ2

n can be considered as the average
value of the fluctuation square of such interval.

Theorem 2: considering follows for every monitoring interval:
Bn = 1;n = 1, 2, · · · , N − 1

ρn =
1

tn+1 − tn

∫ tn+1

tn

(ρ(u)−D(u))du, n = 0, 1, · · · , N − 1
(18)
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Then φn−1(tn) = φn(tn) = 1 is satisfied. Moreover, as to hn(tn) = hn−1(tn), the
form of constant Cn is:

Cn = Cn−1 exp(

∫ tn+1

tn

((ρ(u)−D(u))− ρnψ′n (u))du) . (19)

In which n = 1, 2, · · · , N − 1.
Prove: basing on function ψn (·) and φn (·), follows can be obtained:

φn−1(tn) = Bn−1 exp(

∫ tn

tn−1

((ρ(u)−D(u))− ρn−1ψ
′
n−1 (u))du

= exp(

∫ tn

tn−1

(ρ(u)−D(u))du−
∫ tn

tn−1

(ρ(u)−D(u))du) = 1 .

(20)

Thus:

φn(tn) = Bn exp((

∫ tn+1

tn

(ρ(u)−D(u))− ρnψ′n(u))du)du) = 1 . (21)

Similarly the section part of Theorem 2 can be proved according to the definition
of hn (t). Completed!

as previously mentioned, ρn is selected as the average value of ρ(t) − D(t) in
the nth monitoring interval [tn, tn+1], PDE (3) and initial condition (4) can be
transformed into PDE (10). Note that the monitoring date, share price and option
price is unchanged in such transformation. In order to obtain P̄b(x̄, T,N − 1), PDE
(10) shall be solved. Thus following conventional transformation is performed in
every monitoring interval. 

P̄b(x̄, t̄, n) = W (z, t̄, n) ,

z = ln(
x̄

L
), k = ln(

E

L
) .

(22)

Follows can be obt ained after rewiring PDE (10) by using W (z, t̄, n):

−∂W
∂t̄

+mn
∂W

∂z
+
σ2
n

2

∂2W

∂z2
− ρnW = 0 . (23)

then mn = ρn − σ2
n

2 is obtained, and following conditions can be known:{
W (z, t̄0, 0) = L(ez − ek)1(z≥δ) ,

W (z, t̄n, n) = W (z, t̄n, n− 1)1(z≥0) ,
(24)

in which δ = max{k, 0}, n = 1, 2, · · · , N − 1. For every monitoring interval, the
further transformation is as follows:

W (z, t̄, n) = eαnz+βn t̄g(z, t̄, n), n = 0, 1, · · · , N − 1 (25)
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αn and βn can be defined as follows:

αn = −mn

σ2
n

, βn = αnmn + α2
n

σ2
n

2
− ρn , (26)

g(z, t̄, n) is taken into account to rewrite Formula (23), then the form of heat
conduction equation can be obtained as follows:

−∂g
∂t̄

+ Ĉ2
n

∂2g

∂z2
= 0, Ĉ2

n =
σ2
n

2
, (27)

in which n = 0, 1, · · · , N −1. Following initial conditions can obtained according
initial condition (4):{

g(z, t̄0, 0) = Le−α0z(ez − ek)1(z≥δ), δ = max{k, 0},
g(z, t̄n, n) = g(z, t̄n, n− 1) exp{z(αn−1 − αn) + (βn−1 − βn)t̄n}1(z≥0)

(28)

in which 1 ≤ n ≤ N − 1. Above PDE has only one analytic solution for every
time interval t̄ = [t̄n, t̄n+1]:

g(z, t̄, n) =


L

∫ ∞
0

Sn(z − ξ, t̄− t̄n)e−αξ(eξ − ek)1(ξ≥δ)dξ ,∫ ∞
0

Sn(z − ξ, t̄− t̄n)g(ξ, t̄n, n− 1)e{ξ∆αn+∆βn t̄n}1(ξ≥0)dξ ,

(29)

In which ∆αn = αn−1 − αn, ∆βn = βn−1 − βn. Kernel function Sn(z, t̄) is

Gaussian distribution function (N(0,

√
4Ĉ2

nt̄)).

Sn(z, t̄) =
1√

4πĈ2
nt̄

exp(
−z2

4Ĉ2
nt̄

) , (30)

in which n = 0, 1, · · · , N − 1. According to the result obtained, the theorem of
discrete barrier option pricing in monitoring date is as follows:

Theorem 3: when share price is x, executive price is E and barrier level is L,
the barrier option pricing of discrete monitoring date t = tn+1 is as follows:

Pb(x, tn+1, n) = g(ln(
x

L
), tn+1, n) exp

{
αn ln(

x

L
) + βntn+1

}
. (31)

In which n = 0, 1, · · · , N − 1. The definitions of αn and βn are given in Formula
(26). g(·, tn+1, n) can be computed by using Formula (29).

3.2. Description of Romberg numerical algorithm

g(z0, t̄N+1, N) is computed by adopting reverse numerical iterative algorithm as
the finial pricing of discrete barrier option after N monitoring dates. Because all the
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integral functions in Formula (29) have Gaussian distribution function Sn(z − ξ, τ),
which has exponential attenuation characteristic, ln shall be selected appropriately,
the inappropriate integral in semi-infinite interval [max (0, z − In) , z + ln] can be
approximate to the appropriate integral in interval [max (δ, z − In) , z + ln], as shown
in Fig. 1.

 
  

 
(a) Proper Integral Distribution (b) Improper Integral Distribution

Fig. 1. Integral function image of barrier options

As shown in the integral function image of discrete barrier option of monitoring
point Z given in Fig. 1(a), with the increase of value Z, the maximums of these
Gaussian images are increased rapidly. As shown in the integral function image
of discrete barrier option of monitoring point Z given in Fig. 1(b), the field of
exponential attenuation integration in some interval is inappropriate. New integral
boundary is defined by using Formula (29), and following approximate definition can
be computed:

g(z, t̄, n) ∼=


L

∫ z+ln

max(δ,z−ln)

Sn(z − ξ, t̄− t̄n)e−αξ(eξ − ek)dξ ,∫ z+ln

max(0,z−ln)

Sn(z − ζ, t̄− t̄n)g(ξ, t̄n, n− 1)e{ξ∆αn+∆βn t̄n}dξ .
(32)

In general cases, many numerical integration methods can be applied to compute
above integrals. But in order to reduce the computational complexity of the function
and improve the computing speed, the Romberg method is used here. Following
computational process shall be paid attention:

(1) In order to compute g(z0, t̄N , N −1), it is required to know g(ξ, t̄N−1, N −2),
in which ξ ∈ IN−1 = [max(0, z0 − lN−1), z0 + lN−1].

(2) Similarly, in the case of z ∈ IN−1, in order to compute g(z, t̄N−1, N − 2), it is
required to know g(ξ, t̄N−2, N−3), in which ξ ∈ IN−2 = [max(0, z− lN−2), z+ lN−2].
Thus g(ξ, t̄N−2, N − 3) shall be computed by following formula:

IN−2 = [max(0, z0 − lN−1 − lN−2), z0 + lN−1 + lN−2] . (33)

(3) In order to compute g(z, t̄2, 1), in which z ∈ I2, g(ζ, t̄1, 0) = L
∫∞

0
S1(ζ −
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ξ, τ)e−αξ(eξ − ek)1(ξ≥δ)dξ shall be computed in following interval:

ζ ∈ I1 = [max(0, z0 −
N−1∑
i=1

li), z0 +

N−1∑
i=1

li] . (34)

In Formula (32), compute the integral in the case of variable ξ = ln (x̄/L). In
order to evaluate g(z, t̄n, n−1) in nth step, it shall consider how to select appropriate
U as upper bound in below time interval.

In =


max(δ, z0 −

N−1∑
i=1

li),max(z0 +
N−1∑
i=1

li, U), n = 0

max(0, z0 −
N−1∑
i=1

li),max(z0 +
N−1∑
i=1

li, U), n 6= 0

(35)

Thus relevant algorithm can be expressed as the form of following pseudo-code 1:

pseudo-code 1 Barrier option pricing with n discrete monitoring dates
Input: positive integer m ∈ N , number of iteration steps N ∈ N , segmented

interval Ii; SKOSPropertyAssertionSet and the base ontology
Output: option price X ∈ R+;
1: Step← 1;
2: numnode1 ← 2m.Ceil(length(I1)) + 1;
3: h→ length(I1)/numnode1;
4: for i = 0 : numnode1 do
5: ξi ← i.h;
6: end for
7: for i = 0 : numnode1 do
8: Compute g(ξi, t̄1, 0) by Gaussian quadrature;
9: end for

10: for step = 2 : N − 1 do
11: numnodestep ← 2m.Ceil(length(Istep)) + 1;
12: h← length(Istep)/numnodestep;
13: for i = 0 : numnodestep do
14: ξi ← i.h;
15: end for
16: for i = 0 : numnodestep do
17: Compute g(ξi, t̄Step, step− 1) by using Romberg;
18: end for
19: end for
20: Compute X ← g(z0, t̄N , N − 1) by using Romberg.
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4. Analysis of numerical computation result

A study case of European call barrier option, the result variance and its in-
dex reduced obtained by different simulation algorithms are contrasted with each
other. See Literature [14, 15] for considering the down-and-out discrete barrier op-
tion problem as shown in Table 1. The Constant parameters used in the case are:
share price 100, executive price100, ρ = 0.1, σ = 0.3, expiration date T = 0.2. The
algorithms selected for contrast are: recursion integral (RI), continuous monitoring
formula (CC), ternary tree (TT), Simpson quadrature (SQ), Monte Carlo (MC) and
analytic solution (AS).

Table 1. Pricing of barrier option contracts

N L Proposed
algorithm RI TT SQ MC AS CC

5 89 6.28075513 6.2763 6.281 6.2809 6.28092 6.28076 6.284
5 95 5.67110494 5.6667 5.671 5.6712 5.67124 5.67111 5.646
5 97 5.16724501 5.1628 5.167 5.1675 5.16739 5.16725 5.028
5 99 4.48917224 4.4848 4.489 4.4894 4.48931 4.48917 4.050
25 89 6.20979224 6.2003 6.210 6.2101 6.21059 6.20995 6.210
25 95 5.08124991 5.0719 5.081 5.0815 5.08203 5.08142 5.084
25 97 4.11594901 4.1064 4.115 4.1160 4.11621 4.11582 4.113
25 99 2.81259931 2.8036 2.812 2.8128 2.81261 2.81244 2.673

Average of
computation time 5.346 9.752 10.492 9.817 9.184 8.941 5.639

It can be known from Table 1 that the computation result of proposed algorithm
is closer to the result of analytic solution than the selected comparing algorithm
in case 1, which means the proposed algorithm is provided with higher accuracy of
option model pricing, and reflects the effectiveness of proposed method. From the
perspective of computation time average, the computation time used by proposed
algorithm is relatively less, the computation time used by continuous monitoring
formula is least, but its computational accuracy is lowest, which reflects the higher
computational efficiency of proposed algorithm.

The parameter comparison is refined by Monte Carlo (MC) simulation. The
relevant parameters of MC option pricing are set as: σ = 0.15, r = 0.05, T = 1,
m = 50 and ρ = 0.1. Select 500 simulated paths and carry out study and comparison
for proposed algorithm and MC discrete barrier option pricing problem in the case
of selecting different values as the exercise price of barrier value. The comparison
information about the numerical computation pricing of discrete barrier option and
theoretical barrier option pricing is given in Table 2.

It can be known from the barrier option pricing data given in Table 2, the ac-
curacy of proposed barrier option pricing is higher than the accuracy of MC bar-
rier option pricing, and the error between simulated pricing and theoretical pricing
is about 15%. However, Monte Carlo method adopting different strategies, such
as importance sampling, conditional expectation, antithetic variables and moment
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matching, is not better than proposed algorithm in accuracy.

Table 2. Monte carlo barrier option pricing

Barrier value/
U.S. dollar

Exercise price/
U.S. dollar

Theoretical
value

Option price/ U.S. dollar

Proposed
algorithm

Monte Carlo method

Importance
sampling

Conditional
expectation

Antithetic
variables

Moment
matching

92 100 2.693 2.691 2.633 2.254 2.483 2.437
92 105 1.625 1.615 1.435 1.576 1.441 1.673
88 96 1.286 1.293 1.557 1.154 1.141 1.119
85 90 1.009 1.104 1.025 0.832 0.875 1.002
85 105 0.121 0.118 0.104 0.141 0.109 0.139

5. Conclusion

A Romberg solution having barrier option partial differential Brownian mode of
discrete time parameter is proposed in the paper. The Down-and-Out discrete bar-
rier option problem is modeled as a geometric Brownian motion model with the pa-
rameters changing over time, and the time-independent PDE obtained is transformed
into a simple heat conduction equation form to realize the model simplification and
give the theorem of discrete barrier option pricing. The experimental shows that
the algorithm proposed can improve the accuracy of Down-and-Out discrete barrier
option pricing and reduce the computational complexity.
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